«“–ќћЅќ«, √≈ћќ—“ј« и –≈ќЋќ√»я»

научно-практический журнал

ISSN 2078–1008 (Print)


ћы обновили сайт, чтобы он стал удобнее и функциональнее. ƒо окончани€ обновлени€, более ранние выпуски смотрите здесь, актуальную информацию и свежие выпуски - на новой версии сайта.
—

“ромбоз, гемостаз и реологи€. — 2013. — є3(55). — —. 4.

ќбзор

”ƒ  612.11/13:612.111/117.2

ƒ≈‘ќ–ћ»–”≈ћќ—“№ Ё–»“–ќ÷»“ќ¬: ќ—Ќќ¬Ќџ≈ ћ≈’јЌ»«ћџ —–ќ„Ќќ… јƒјѕ“ј÷»»

ј. ¬. ћуравьев 1, ≈. ¬. –ойтман 2, ». ј. “ихомирова 1, ј. ј. ћуравьев 1, —. ¬. Ѕулаева 1, ѕ. ¬. ћихайлов 1

‘√Ѕќ” ¬ѕќ ярославский государственный педагогический университет им.  . ƒ. ”шинского 1, ярославль;
‘√Ѕ” ‘едеральный научно-клинический центр детской гематологии, онкологии и иммунологии имени ƒмитри€ –огачева ћинздравсоцразвити€ –оссийской ‘едерации 2; ћосква, –осси€

¬ыполнен обзор основных экспериментальных и теоретических исследований важной микрореологической характеристики эритроцитов Ч их деформируемости. ќбсуждена роль деформации эритроцитов в транспорте кислорода и оксигенации тканей на уровне крупных сосудов и в системе микроциркул€ции. »сследована роль мембранных белков в деформации эритроцитов; показаны последстви€ их фосфорилировани€ разными протеинкиназами при срочной адаптации эритроцитов к мен€ющимс€ запросам тканевого метаболизма. ¬ыполнен анализ разных элементов молекул€рных сигнальных каскадов, св€занных с изменением этой существенной микрореологической характеристики эритроцитов. ѕоказана важна€ роль эритроцитов как сенсоров гипоксии и участие их в регул€ции тонуса артериол путем выделени€ регул€торной молекулы Ч аденозинтрифосфата.

 лючевые слова: эритроциты Ч деформируемость Ч микроциркул€ци€ Ч сигнальные молекулы.

ƒЋя  ќ––≈—ѕќЌƒ≈Ќ÷»»
ћуравьЄв јлексей ¬асильевич Ч д. б. н., профессор ‘√Ѕќ” ¬ѕќ я√ѕ” им.  . ƒ. ”шинского.
јдрес: 150000, –осси€, ярославль, –еспубликанска€ улица, д. 108.
E-mail: alexei.47@mail.ru

—тать€ поступила 27.08.2012, прин€та к печати 30.11.2012.

ERYTHROCYTES DEFORMABILITY: BASIC MECHANISMS OF SHORTM ADAPTATION

A. V. Muravyov 1, E. V. Roitman 2, I. A. Tikhomirova 1, A. A. Muravyov 1, S. V. Bulaeva 1, P. V. Mikhailov 1

Yaroslavl State Pedagogical University named after K. D. Ushinsky 1, Yaroslavl; Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Ministry of Public Health and Social Development of Russian Federation 2; Moscow; Russia

A review of basic experimental and theoretical studies of important microrheological erythrocytes characteristics Ч their deformability is presented and its role in oxygen transport and tissue oxygenation in macro- and microcirculation is discussed. The role of membrane proteins in erythrocytes deformation is studied; eff ects of their phosphorylation by diff erent protein kinases in short-term erythrocytes adaptation to tissue oxygen demands are shown. The analysis of diff erent molecular signaling cascades associated with erythrocytes deformability is completed. The important role of erythrocytes as hypoxia sensor and regulator of arterioles tone by means of adenosine triphosphate is shown.

Key words: erythrocytes Ч deformability Ч microcirculation Ч signal molecules.

Ћитература/References

  1. ƒжонсон ѕ. ѕериферическое кровообращение [ѕер. с англ.]. Ч ћ.: ћедицина, 1982. Ч 396 с.
  2. Cokelet G. B., Meiselman H. J. Rheological comparison of hemoglobin solutions and erythrocyte suspensions // Science. Ч 1968. Ч Vol. 162. Ч P. 275Ц277.
  3. ”илкинсон ”. Ћ. Ќеньютоновские жидкости [ѕер. с англ.]. Ч ћ.: ћир, 1964. Ч 216 с.
  4. ћуравьев ј. ¬., „епоров —. ¬. √емореологи€ (экспери- ментальные и клинические аспекты реологии крови): ћонографи€. Ч ярославль: »зд-во я√ѕ” им.  . ƒ. ”шин- ского, 2009. Ч 178 с.
  5. Chasis J. A., Mohandas N. Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein as sociations // J. Cell. Biol. Ч 1986. Ч Vol. 103. Ч P. 343Ц350.
  6. Arduini A., Rossi M., Mancinelli G. at al. Eff ect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability // Life Sci. Ч 1990. Ч Vol. 47. Ч P. 2395Ц2400.
  7. Nunomura W., Takakuwa Y. Regulation of protein 4.1R interactions with membrane proteins by Ca 2+ and calmodulin // Front Biosci. Ч 2006. Ч Vol. 11. Ч P. 1522Ц1539.
  8. Stoltz J. F., Donner M. Red blood cell aggregation: measurements and clinical applications // Turkish J. Med. Sci. Ч 1991. Ч Vol. 15. Ч P. 26Ц39.
  9. Baskurt O. K., Meiselman H. J. Blood rheology and hemodynamics // Semin. Thromb. Hemost. Ч 2003. Ч Vol. 29, є 5. Ч P. 435Ц450.
  10. Minetti G., Ciana A., Balduini C. Diff erential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes // Biochem. J. Ч 2004. Ч Vol. 377 (Pt 2). Ч P. 489Ц497.
  11. Cooke B. M., Lim C. T. Mechanical and adhesive properties of healthy and diseased red blood cells. Ч Handbook of Hemorheology and Hemodynamics. Ч Amsterdam: IOS Press, 2007. Ч 455 р.
  12.  упри€нов ¬. ¬.,  араганов я. Ћ.,  озлов ¬. ». ћикро- циркул€торное русло. Ч ћ.: ћедицина, 1975. Ч 216 с.
  13. „ернух ј. ћ., јлександров ѕ. Ќ., јлексеев ќ. ¬. ћикро- циркул€ци€. Ч ћ.: ћедицина, 1975. Ч 455 с.
  14. Mohandas N. Molecular bases for red cell membrane viscoelastic properties // Biochim. Soc. Trans. Ч 1992. Ч Vol. 20. Ч P. 776Ц782.
  15. Berga L., Dolz J., Vives-Corrons J.L. et al. Viscometric methods for assessing red cell deformability and fragmentation // Biorheology Suppl. Ч 1984. Ч Vol. 1. Ч P. 297Ц301.
  16. Stuart J., Nash G. B. Red cell deformability and haematological disorders // Blood Rev. Ч 1990. Ч Vol. 4, є 3. Ч P. 141Ц147.
  17. Manno S., Takakuwa Y., Mohandas N. Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation // J. Biol. Chem. Ч 2005. Ч Vol. 280, є 9. Ч –. 7581Ц7587.
  18. Nash G. B., Meiselman H. J. Red cell and ghost viscoelasticity. Eff ects of hemoglobin concentration and in vivo aging // Biophys. J. Ч 1983. Ч Vol. 43, є 1. Ч P. 63Ц73.
  19. Pfaff erott C., Nash G. B., Meiselman H. J. Red blood cell deformation in shear fl ow. Eff ects of internal and external phase viscosity and of in vivo aging // Biophys. J. Ч 1985. Ч Vol. 47, є 5. Ч P. 695Ц704.
  20. Kon K., Maeda N., Shiga T. Erythrocyte deformation in shear fl ow: infl uences of internal viscosity, membrane stiff ness, and hematocrit // Blood. Ч 1987. Ч Vol. 69. Ч P. 727Ц734.
  21. Drochon A., Barthes-Biesel D., Lacombe C., Lelievre J. C. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements // J. Biomech. Eng. Ч 1990. Ч Vol. 112. Ч P. 241Ц249.
  22. Burton A. C. Role of geometry of size and shape in microcirculation // Fed. Prpc. Ч 1966. Ч Vol. 25. Ч P. 1753Ц1760.
  23. »венс »., —кейлак –. ћеханика и термодинамика биоло- гических мембран [ѕер. с англ.]. Ч ћ.: ћир, 1982. Ч 304 с.
  24. Evans E. A. Structure and deformation properties of red blood cells: concepts and quantitative methods // Methods Enzymol. Ч 1989. Ч Vol. 173. Ч P. 3Ц35.
  25. Neu B., Sowemimo-Coker S.O., Meiselman H. J. Cell-cell affi nity of senescent human erythrocytes // Biophys J. Ч 2003. Ч Vol. 85, є 1. Ч P. 75Ц84.
  26. Dintenfass L. Theoretical aspects and clinical applications of the blood viscosity equation containing a term for the internal viscosity of the red cell // Blood Cells. Ч 1977. Ч Vol. 3, є 2. Ч P. 367Ц374.
  27. Schmid-Sch"onbein H., Gaehtgens P. What is red cell deformability? // Scand. J. Clin. Lab. Invest. Suppl. Ч 1981. Ч Vol. 41 (Suppl 156). Ч P. 13Ц26.
  28. Evans E.A, Hochmuth R. M. A solid-liquid composite model of the red cell membrane // J. Membr. Biol. Ч 1977. Ч Vol. 30, є 4. Ч P. 351Ц362.
  29. Takakuwa Y., Mohandas N., Ishibashi T. Regulation of red cell membrane deformability and stability by skeletal protein network // Biorheology. Ч 1990. Ч Vol. 27, є 3Ц4. Ч P. 357Ц365.
  30. Mohandas N., Chasis J. A. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids // Semin. Hematol. Ч 1993. Ч Vol. 30, є 3. Ч P. 171Ц192.
  31. Chien S., Sung L. P. Molecular basis of red cell membrane rheology. Part 1 // Biorheology. Ч 1990. Ч Vol. 27, є 3Ц4. Ч P. 327Ц344.
  32. Sridharan M., Bowles E. A., Richards J. P. et al. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel // Am. J. Physiol. Heart. Circ. Physiol. Ч 2012. Ч Vol. 302, є 3. Ч H553-Ќ559.
  33. Pasini E. M., Kirkedaard M., Salerno D. et al. Deep coverage mouse red blood cell proteome. A fi rst comparison with the human red blood cell // Mol. Cell. Proteomics. Ч 2008. Ч Vol. 7. Ч P. 1317Ц1330.
  34. Cohen C. M., Foley S. F. Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1 and actin // Biochemistry. Ч 1984. Ч Vol. 23. Ч P. 6091Ц6098.
  35. Stromqvist M., Backman L., Shanbhag V. P. Eff ect of spectrin dimer on actin polymerization // FEBS Lett. Ч 1985. Ч Vol. 190, є 1. Ч –. 15Ц20.
  36. Anderson J. P., Morrow J. S. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding // J. Biol. Chem. Ч 1987. Ч Vol. 262, є 13. Ч P. 6365Ц6372.
  37. Govekar R. B., Zingde S. M. Protein kinase C isoforms in human erythrocytes // Ann. Hematol. Ч 2001. Ч Vol. 80. Ч P. 531Ц534.
  38. Houslay M. D., Kolch W. Cell-type specifi c integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling // Mol. Pharm. Ч 2000. Ч Vol. 58, є 4. Ч P. 659Ц668.
  39. Clari G., Michielin E., Moret V. Interrelationships between protein kinases and spectrin phosphorylation in human erythrocytes // Biochim. Biophys. Acta. Ч 1981. Ч Vol. 8, є 640 (1). Ч P. 240Ц251.
  40. Erusalimsky J. D., Balas N., Milner Y. Possible identity of a membrane-bound with a soluble cyclic AMP-independent erythrocyte protein kinase that phosphorylates spectrin // Biochim. Biophys. Acta. Ч 1983. Ч Vol. 31, є 756. Ч P. 171Ц181.
  41. Eder P. S., Soong C. J., Tao M. Phosphorylation reduces the affi nity of protein 4.1 for Spectrin // Biochemistry. Ч 1986. Ч Vol. 8, є 25 (7). Ч P. 1764Ц1770.
  42. Horga J. F., Gisbert J., De Agustin J. C. A beta-2-adrenergic receptor activates adenilate cyclase in human erythrocyte membranes at physiological calcium plasma concentrations // Blood Cells Mol. Dis. Ч 2000. Ч Vol. 26, є 3. Ч –. 223Ц228.
  43. Sundquist J., Blas S. D., Hogan J. E. et al. The renergic receptor in human erythrocyte membranes mediates interaction in vitro of epinephrine and thyroid hormone at the membrane Ca2+ Ч ATPase // Cell. Signal. Ч 1992. Ч Vol. 4, є 6. Ч P. 795Ц799.
  44. Telen M. J. Erythrocyte adhesion receptors: blood group antigens and related molecules // Transfus. Med. Rev. Ч 2005. Ч Vol. 19, є 1. Ч P. 32Ц44.
  45. Tuvia S., Moses A., Gulayev N. et al. Beta-adrenergic agonists regulate cell membrane fl uctuations of human erythrocytes // J. Physiol. Ч 1999. Ч Vol. 516, є 3. Ч P. 781Ц787.
  46. Harrison M. L., Isaacson C. C., Burg D. L. et al. Phosphorylation of human erythrocyte band 3 by endogenous p72syk // J. Biol. Chem. Ч 1994. Ч Vol. 269, є 2. Ч P. 955Ц959.
  47. Kawakami M., Nagira T., Hayashi T. et al. Hypo-osmotic potentiation of acetylcholine-stimulated ciliary beat frequency through ATP release in rat tracheal ciliary cells // Exp. Physiol. Ч 2004. Ч Vol. 89, є 6. Ч P. 739Ц751.
  48. Tang L. C., Schoomaker E., Wiesmann W. P. Cholinergic agonists stimulate calcium uptake and cGMP formation in human erythrocytes // Biochim. Biophys. Acta. Ч 1984. Ч Vol. 772. Ч –. 235Ц238.
  49. Olearczyk J. J., Stephenson A. H., Lonigro A. J., Sprague R. S. Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes // Am. J. Physiol. Heart Circ. Physiol. Ч 2004. Ч Vol. 286. Ч H940- H945.
  50. Sprague R. S., Bowles E. A., Hanson M. S. et al. Prostacyclin analogs stimulate receptor-mediated cAMP synthesis and ATP release from rabbit and human erythrocytes // Microcirculation. Ч 2008. Ч Vol. 15, є 5. Ч –. 461Ц471.
  51. Olearczyk J. J., Stephenson A. H., Lonigro A. J., Sprague R. S. NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G prote in Gi // Am. J. Physiol. Heart Circ. Physiol. Ч 2004. Ч Vol. 287. Ч H748-H754.
  52. Willems C., Stel H. V. , van Aken W. G . , van Mourik J. A. Binding and inactivation of prostacyclin (PGI2) by human erythrocytes // Br. J. Haematol. Ч 1983. Ч Vol. 54, є 1. Ч P. 43Ц52.
  53. Gascard P., Cohen C. M. Absence of high-affi nity band 4.1 binding sites from membranes of glycophorin C- and D-defi cient (Leach phenotype) erythrocytes // Blood. Ч 1994. Ч Vol. 83, є 4. Ч P. 1102Ц1108.
  54. Cooper D. M., Brooker G. Ca2+-inhibited adenylate cyclase in cardiac tissue // Trends Pharmacol. Sci. Ч 1993. Ч Vol. 14. Ч P. 34Ц35.
  55. Hilario S., Saldanha C., Martins-Silva J. The effect of adrenaline upon human erythrocyte properties. Sex-related diff erences? // Biorheology. Ч 1999. Ч Vol. 36, є 1Ц2. Ч P. 124.
  56. Hu D. E., Fan T. P. Suppression of VEGF induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A // Br. J. Pharmacol. Ч 1995. Ч Vol. 114. Ч P. 262Ц269.
  57. . Morris S. A., Bilezikian J. P. Evidence that forskolin activates turkey erythrocyte adenylate cyclase through a noncatalytic site // Arch. Biochem. Biophys. Ч 1983. Ч Vol. 220, є 2. Ч P. 628Ц636.
  58. Rasmussen H., Lake W., Alien J. E. The eff ect of catecholamines and prostaglandins upon human and rat erythrocytes // Biochim. Biophys. Acta. Ч 1975. Ч Vol. 411, є 1. Ч P. 63Ц73.
  59. Andrews D. A., Lu Y., Low Ph.S. Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells // Blood. Ч 2002. Ч Vol. 100, є 9. Ч P. 3392Ц3399.
  60. Takakuwa Y. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells // Int. J. Hematol. Ч 2000. Ч Vol. 72, є 3. Ч P. 298Ц309.
  61. Sager G., Jacobsen S. Eff ect of plasma on human erythrocyte beta-adrenergic receptors // Biochem. Pharmacol. Ч 1985. Ч Vol. 34. Ч P. 3767Ц3771.
  62. Muravyov A. V., Tikhomirova I. A., Maimistova A. A. et al. Crosstalk between adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism under red blood cell microrheological changes // Clin. Hemorheol. Microcirc. Ч 2010. Ч Vol. 45, є 2Ц4. Ч P. 337Ц345.
  63. Rosen S. G., Berk M.A, Popp D. A. et al. Beta-2- and alpha- 2-adrenergic receptors and receptor coupling to adenylate cyclase in human mononuclear leukocytes and platelets in relation to physiological variations of sex steroids // J. Clin. Endocrinol. Metab. Ч 1984. Ч Vol. 58, є 6. Ч P. 1068Ц1076.
  64. Tepperman J., Tepperman H. Metabolic and endocrine physiology: an introductory text. Ч 5th ed. Ч Chicago- London: Year Book Medical Publishers, Inc, 1987. Ч 656 p.
  65. Creighton J. R., Asada N., Cooper D. M., Steven T. Coordinate regulation of membrane cAMP by Ca 2 + -inhibited adenylyl cyclase and phosphodiesterase activities // Am. J. Physiol. Lung Cell Mol. Physiol. Ч 2003. Ч Vol. 284. Ч L100-L107.
  66. Phillips P. G., Long L., Wilkins M. R., Morrell N. W. cAMP phosphodiesterase inhibitors potentiate eff ects of prostacyclin analogs in hypoxic pulmonary vascular remodeling // Am. J. Physiol. Lung Cell Mol. Physiol. Ч 2005. Ч Vol. 288. Ч L103-L115.
  67. ћуравьев ј. ¬., ћаймистова ј. ј., “ихомирова ». ј. и др. –оль протеинкиназ мембраны эритроцитов чело- века в изменени€х их деформируемости и агрегации // ‘изиологи€ человека. Ч 2012. Ч “. 38, є 2. Ч —. 94Ц100.
  68. Laszlo R., Winkler C., W"ohrl S. et al. Infl uence of verapamil on tachycardia-induced alterations of PP1 and PP2A in rabbit atrium // Exp. Clin. Cardiol. Ч 2007. Ч Vol. 12, є 4. Ч P. 175Ц178.
  69.  аро  ., ѕедли “., Ўротер –., —ид ”. ћеханика кровообращени€ [ѕер. с англ.]. Ч ћ.: ћир, 1981. Ч 623 с.
  70. Secomb T. W. Flow-dependent rheological properties of blood in capillaries // Microvasc. Res. Ч 1987. Ч Vol. 34. Ч –. 46Ц58.
  71. Kaul D. K., Fabry M. E. In vivo studies of sickle red blood cells // Microcirculation. Ч 2004. Ч Vol. 11. Ч P. 153Ц165.
  72. Lipowsky H. H., Cram L. E., Justice W., Eppihimer M. J. Eff ect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro fi lterability // Microvasc. Res. Ч 1993. Ч Vol. 46, є 1. Ч P. 43Ц64.
  73. Cokelet G. B., Meiselman H. J. Rheological comparison of hemoglobin solutions and erythrocyte suspensions // Science. Ч 1968. Ч Vol. 162. Ч P. 275Ц277.
  74. Priers A. R., Secomb T. W. Rheology of the microcirculation // Clin. Hemorheol. Microcirc. Ч 2003. Ч Vol. 29, є 3Ц4. Ч P. 143Ц148.
  75. Secomb T. W., Pries A. R. Basic Principles of Hemodynamics // In: Handbook of Hemorheology and Hemodynamics. Ч Amsterdam: IOS Press, 2007. Ч –. 289Ц306.
  76. Popel A. S., Johnson P. C. Microcirculation and hemorheology // Annu. Rev. Fluid Mech. Ч 2005. Ч Vol. 37. Ч –. 43Ц69.
  77. Goldsmith H. L., Cokelet G. R., Gaehtgens P. Robin Fahraeus: evolution of his concepts in cardiovascular physiology // Am. J. Physiol. Ч 1989. Ч Vol. 257 (3 Pt 2). Ч H1005- H1015.
  78. Pantely G. A., Swenson L. J., Tamblyn C. H. et al. Increased vascular resistance due to a reduction in red cell deformability in the isolated hind limb of swine // Microvasc. Res. Ч 1988. Ч Vol. 35. Ч P. 86Ц100.
  79. Simchon S., Jan K. M., Chien S. Infl uence of reduced red cell deformability on regional blood fl ow // Am. J. Physiol. Ч 1987. Ч Vol. 253 (4 Pt 2). Ч H898-Ќ903.
  80. Baskurt O. K., Sent"urk U. K., Dayan N. et al. Cyclosporine A aff ects red blood cell deformability in vivo but not in vitro in guinea pig // J. Pharmacol. Exp. Ther. Ч 1995. Ч Vol. 274. Ч P. 438Ц442.
  81. Fischer D. J., Torrence N. J., Sprung R. J., Spence D. M. Determination of erythrocyte deformability and its correlation to cellular ATP release using micro bore tubing with diameters that approximate resistance vessels in vivo // Analyst. Ч 2003. Ч Vol. 128, є 9. Ч P. 1163Ц1168.
  82. Sprague R., Bowles E., Stumpf M. et al. Rabbit erythrocytes possess adenylyl cyclase type II that is activated by the heterotrimeric G proteins Gs and Gi // Pharmacol. Rep. Ч 2005. Ч Vol. 57 (Suppl) Ч P. 222Ц228.
  83. Ellsworth M. L., Forrester T., Ellis C. G., Dietrich H. H. The erythrocyte as a regulator of vascular tone // Am. J. Physiol. Heart Circ. Physiol. Ч Vol. 269, є 6. Ч P. 2155Ц2161.
  84. Sprague R., Stephenson A., Bowles E. et al. Expression of the heterotrimeric G protein Gi and ATP release are impaired in erythrocytes of humans with diabetes mellitus // Adv. Exp. Med. Biol. Ч 2006. Ч Vol. 588. Ч P. 207Ц216.
  85. Bozzo J., Hern M. R., Ordinas A. Reduced red cell deformability associated with blood fl ow and platelet activation: improved by dipyridamole alone or combined with aspirin // Cardiovasc. Res. Ч 1995. Ч Vol. 30 (Suppl 5). Ч P. 725Ц730.
  86. Neu B., Sowemimo-Coker S.O., Meiselman H. J. Cell-cell affi nity of senescent human erythrocytes // Biophys. J. Ч 2003. Ч Vol. 85, є 1. Ч –. 75Ц84.
  87. Nash G. B. Red cell mechanics: what changes are needed to adversely aff ect in vivo circulation // Biorheology. Ч 1991. Ч Vol. 28. Ч P. 231Ц239.
  88. Andreozzi G. M., Fava E., Barresi M. et al. Microcirculatory eff ects of the red cells aphaeresis in patients suff ering from peripheral arterial disease // Clin. Hemorheol. Microcirc. Ч 1995. Ч Vol. 15. Ч P. 406Ц409.
  89. K"oksal C., Ercan M., Bozkurt A. K. Hemorheological variables in critical limb ischemia // Int. Angiol. Ч 2002. Ч Vol. 21, є 4. Ч P. 355Ц359.
  90. Wang X., Yang L., Liu Y. et al. Oxidized low-density lipoprotein (Ox-LDL) impacts on erythrocyte viscoelasticity and its molecular mechanism // J. Biomech. Ч 2009. Ч Vol. 42, є 14. Ч P. 2394Ц2399.
  91. Stoltz J. F. Red blood cell microrheology (clinical and pharmacological applications) // Ric. Clin. Lab. Ч 1983. Ч Vol. 13, Suppl. 3. Ч P. 53Ц70.
  92. Cicco G., Cicco S. Hemorheological aspects in the microvasculature of several pathologies // Adv. Exp. Med. Biol. Ч 2007. Ч Vol. 599. Ч P. 7Ц15.
  93. ћуравьев ј. ¬., якусевич. ¬.¬., «айцев Ћ. √. и др. √емо- реологические профили пациентов с артериальной ги- пертензией в сочетании с синдромом гиперв€зкости // ‘изиологи€ человека. Ч 1998. Ч “. 24, є 4. Ч —. 113Ц117.
  94. Ernst E., Matrai A. Blood rheology in athletes // J. Sports Med. and Phus. Fitness. Ч 1985. Ч Vol. 25, є 4. Ч P. 207Ц 212.
  95. Zannad F., Stoltz J. F. Blood rheology in arterial hypertension // J. Hypertens. 1992. Ч Vol. 10. Ч P. 69Ц78.
  96. Vaya ј., Martinez M., Labos M., Guiral I. The hemorheological profi le in off spring of hypertensive individuals // Clin. Hemorheol. Ч 1996. Ч Vol. 16, є 3. Ч P. 235Ц243.
  97. Cicco G., Pirrelli A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension // Clin. Hemorheol. Microcirc. Ч 1999. Ч Vol. 21, є 3Ц4. Ч P. 169Ц177.
  98. Muravyov A. V., Cheporov S. V., Kislov N. V., Volkova E. L. Hemorheological changes in solid tumor patients after treatment with recombinant erythropoietin // Clin. Hemorheol. Microcirc. Ч 2009. Ч Vol. 41, є 1. Ч P. 39Ц47.
  99. ћуравьев ј. ¬., „епоров —. ¬. √ематологические и гемо- реологические аспекты коррекции анемий препарата- ми эритропоэтина у больных солидными опухол€ми: монографи€. Ч ярославль: »зд-во я√ѕ” им.  . ƒ. ”шин- ского, 2009. Ч 162 с.
  100. Muravyov A. V., Cheporov S. V., Kislov N. V. et al. Comparative effi ciency and hemorheological consequences of hemotransfusion and epoetin therapy in anemic cancer patients // Clin. Hemorheol. Microcirc. Ч 2010. Ч Vol. 44, є 2. Ч P. 115Ц123.
  101. Muravyov A. V., Tikhomirova I. A., Maimistova A. A. et al. Red blood cell aggregation changes are depended on its initial value: Eff ect of long-term drug treatment and shortterm cell incubation with drug // Clin. Hemorheol. Microcirc. Ч 2011. Ч Vol. 48, є 4. Ч P. 231Ц240.
  102. Shin S., Hou J. X., Suh J. S., Singh M. Validation and application of a microfl uidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability // Clin. Hemorheol. Microcirc. Ч 2007. Ч Vol. 37. Ч –. 319Ц328.
  103. Muravyov A. V. Yakusevich V. V., Maimistova A. A. et al. Hemorheological effi ciency of drugs, targeting on intracellular phosphodiesterase activity: in vitro study // Clin. Hemorheol. Microcirc. Ч 2007. Ч Vol. 36, є 4. Ч P. 327Ц334.
  104. Sabo A., Jakovljevi Stanuloviet al. Red blood cell deformability in diabetes mellitus: eff ect of phytomenadione // Int. J. Clin. Pharmacol. Ther. Toxicol. Ч 1993. Ч Vol. 31, є 1. Ч P. 1Ц5.
  105. Forst T., Kunt T. Eff ects of C-peptide on microvascular blood flow and blood hemorheology // Exp. Diabesity Res. Ч 2004. Ч Vol. 5, є 1. Ч P. 51Ц64.
  106. Hach T., Forst T., Kunt T. et al. C-peptide and its C-terminal fragments improve erythrocyte deformability in type 1 diabetes patients // Exp. Diabetes Res. Ч 2008. Ч Vol. 45. Ч P. 730Ц736.
  107. Schut N. H., van Arkel E. C., Hardeman M. R. et al. Blood and plasma viscosity in diabetes: possible contribution to late organ complications? // Diabetes Res. Ч 1992. Ч Vol. 19, є 1. Ч P. 31Ц35.
  108. Vi J., M Z., Krky G. et al. Hemorheologic factors in hypertensive and diabetic retinopathy // Orv. Hetil. Ч 2001. Ч Vol. 20, є 142 (20). Ч P. 1045Ц1048.
  109. Negrean V., Suciu I., S^ampelean D., Cozma A. Rheological changes in diabetic microangiopathy // Rom. J. Intern. Med. Ч 2004. Ч Vol. 42, є 2. Ч P. 407Ц413.
  110. Sauvage M., Mazi`ere P., Fathallah H., Giraud F. Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C-zeta in human erythrocytes // Eur. J. Biochem. Ч 2000. Ч Vol. 267, є 4. Ч P. 955Ц962.
  111. Ceolotto G., Sartori M., Felice M. et al. Eff ect of protein kinase C and insulin on Na+/H+ exchange in red blood cells of essential hypertensives // J. Hum. Hypertens. Ч 1999. Ч Vol. 13, є 5. Ч P. 321Ц327.
  112. Oliveira S., Seok S. C. A matrix-based multilevel approach to identify functional protein modules // Int. J. Bioinform. Res. Appl. Ч 2008. Ч Vol. 4, є 1. Ч P. 11Ц27.
  113. Semplicini A., Ceolotto G., Felice M. et al. Posttranslational eff ects of protein kinase C and insulin on red cell membrane phosphorylation and cation heteroexchange in hypertension // Blood Press Suppl. Ч 1996. Ч Vol. 1. Ч P. 55Ц58.
  114. Ling E., Danilov Y. N., Cohen C. M. Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation // J. Biol. Chem. Ч 1988. Ч Vol. 15, є 263. Ч P. 2209Ц2216.
  115. Muravyov A. V., Meiselman J. H., Yakusevich V. V., Zamishlayev A. V. Eff ects of antihypertensive therapy on hemorheological profi les in female hypertensive patients with initially low or high whole blood viscosity // Clin. Hemorheol. Microcirc. Ч 2002. Ч Vol. 26, є 2. Ч P. 125Ц135.
  116. Starzyk D., Korbut R., Gryglewski R. J. Eff ects of nitric oxide and prostacyclin on deformability and aggregability of red blood cells of rats ex vivo and in vitro // J. Physiol. Pharmacol. Ч 1999. Ч Vol. 50. Ч –. 629Ц637.

— —

www.hemostas.ru »нформационный проект
«√емостаз и реологи€»
Ќаучное общество
« линическа€ гемостазиологи€»
 
—
∆урнал
«“ромбоз, гемостаз и реологи€» №2 2017
вышел из печати и разослан подписчикам
—одержание номера
—
јдрес дл€ корреспонденции:
ћосква 123104 а/€131
 
ѕо работе сайта:
roitman@hemostas.ru
hemostas@aha.ru
 
“елефон редакции:
(903) 144-46-34
 
‘акс редакции:
(495) 699-33-73
 
ѕодписной индекс
по каталогу
–оспечать»:

18362 — дл€ индивидуальных подписчиков,
18363 — дл€ организаций
 
ѕодписной индекс
по каталогу «ѕресса –оссии»:

83835 — дл€ индивидуальных подписчиков,
83837 — дл€ организаций

ћеждународный
индекс:

ISSN 2078-1008
—
 
Ќаписать веб-мастеру